
Crypto 101: How to hide in
plain sight
Batman’s Kitchen 2024 | Dhruv Ashok

The basics: crypto vocab

- Plaintext: the message we want to communicate
- Ciphertext: the “scrambled” form of our plaintext/message
- Key: usually secret, used to convert plaintext to ciphertext and

vice versa
- Encryption: the process of turning a plaintext into a ciphertext
- Decryption: the process of turning a ciphertext back into a

plaintext
- Nonce: a (usually random) number only used once

The basics: encodings

- Encoding != encryption
- https://cyberchef.io/
- Hexadecimal to represent bytes, Base64 sometimes used as well
- Hex: 0x01020304050607
- Base64: dGVzdA==

https://cyberchef.io/

The basics: XOR

- Logical operation
- We like it because it’s easily reversible

- ct = pt XOR key → pt = ct XOR key
- Used in a few different cryptosystems we’ll talk about today
- Key properties

- Anything XORed by itself is 0
- Anything XOR 0 is itself

- We can switch the order of stuff

The basics: hashes

- Take a variable length string, turn it into a fixed length string
- This is done uniquely and irreversibly (ideally)
- Few different algorithms for this

- Not all algorithms created equal!
- MD5 bad, SHA1/SHA256 good

The basics: hashes contd.

- File integrity
- Provide hash of file, user can hash the file they’ve

downloaded and check if it matches the legitimate hash
- Storing passwords

- Hash and store a user’s password when they create an account
- For login, hash the password the user enters and check if it

matches the stored one
- Usually done in combination with a salt

The basics: hashes (CTF version)

- We can’t go from hash to plaintext..
- But we can go from plaintext to hash
- And with enough plaintext/hash pairs, we could get lucky!

- Hashcat, johntheripper, https://crackstation.net
- rockyou.txt

https://crackstation.net

Encryption: from the beginning

Historical Ciphers: Caesar

- Choose a number between 1 and 26 (key)
- Given a message (plaintext), shift every alphabet to the right by

the key
- Given a ciphertext, shift every alphabet to the left by the key
- k = 3, m = “HELLO” → ct = “KHOOR”

Historical Ciphers: Caesar contd.

- https://cyberchef.io
- Choose ROT13 as the cipher
- Play around with it and get a feel for it

- Given a ciphertext, can you determine anything about the
plaintext without the key?

https://cyberchef.io

Caesar Cryptanalysis

- What are some problems with this?
- Keyspace is small and easily brute forceable (1-26)
- Frequency of characters in plaintext is leaked
- Known plaintext issues

Historical Ciphers: Vigenere

- https://cyberchef.io
- Choose key (some string of alphabets)
- Repeat key until length of plaintext
- For each character pair, use table
- Polyalphabetic cipher

https://cyberchef.io

Historical Ciphers: Vigenere contd.

- Keyspace is (if key chosen well) larger and harder to brute force
- Still possible to do something like a dictionary attack

- Frequency is no longer leaked
- What happens if we want to scream though?

- AAAAAAAAAAAAAA
- What happens if we know some of the plaintext?

Historical Ciphers: Enigma

- Employed by Nazis in WW2 to encrypt their communications
- Was famously broken after tireless cryptanalysis by Poland and

Bletchley Park
- No letter ever encrypts to itself

- Known plaintext was also taken advantage of

Historical Ciphers: One-Time Pad

- Choose key of length at least the length of the plaintext
- For each byte in plaintext and key, XOR them together
- pt = “encrypted”, key = 0xb87301194dacf57fde → ct =

0xdd1d626b34dc811aba
- Looks pretty random when we have a good key!

Historical Ciphers: One-Time Pad contd.

- Employed by Soviets in WW2 to encrypt their communications
- OTP is actually quite good!....

- But the Soviets misused it
- Keys were repeated due to German invasion

- (P1 XOR k) XOR (P2 XOR k) = P1 XOR P2
- If can get some/all of one, you can get some/all of the other

since (P1 XOR P2) XOR P1 = P2
- This is actually how Soviet spies in Los Alamos were first

discovered

Symmetric key encryption

A better way: AES

- Combines elements of the previous ciphers (OTP, substitution
cipher, etc.)

- Has a few different modes
- Not all modes are created equal!

A better way: AES modes

- Block cipher (ECB, CBC, GCM)
- Pad plaintext to a multiple of block size, then encrypt using

notion of “blocks” (groups of bytes of the same size)
- Stream cipher (CTR)

- Generate keystream of same size as plaintext, then XOR
together
- This is essentially the same as how OTP works!

A better way: AES (CTF version)

- AES CTR key/IV reuse
- Basically the same way you break One Time Pad

- AES CBC bitflipping
- If you control the IV (which you shouldn’t), you can

predictably modify a decrypted ciphertext
- AES CBC padding oracle

- Relies on excessive error details (padding failure)
- AES ECB chosen plaintext attack
- Various other shenanigans with how AES gets used/implemented

A better way: AES contd.

- We now introduce randomness
- Not vulnerable to frequency attacks, known plaintext (usually),

key brute force (usually)
- It works beautifully but…

- How do we communicate the key?
- Especially if we’re communicating for the first time on the

Internet

Public key cryptography

RSA origin story

A new notion: public/private keys

- Symmetric crypto uses just one (secret) key to encrypt
- Asymmetric crypto uses a public/private keypair

- You can share your public key with everyone!
- NEVER share your private key with ANYONE.

- Encrypt with public key, decrypt with private key

A new notion: public/private keys contd.

- We can use public key crypto to..
- Encrypt communication
- Sign/verify the authenticity of communication

- This is how JSON Web Tokens (JWTs) work!
- Complete a key exchange

Key exchange analogy

Why does this work?

- Public key cryptosystems are set up such that
- encryption/decryption given the right information is easy
- encryption/decryption is computationally infeasible otherwise
- This idea is known as a “trapdoor function”

- Send information that helps us come to agreement on a key, but not
enough that an attacker would be able to figure it out

Public key crypto (CTF version)

- Main cryptosystem you will see is RSA (though many others exist,
of course)

- https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
- https://github.com/RsaCtfTool/RsaCtfTool
- Understanding the math of RSA will help a lot if you’re interested

in digging deeper
- Feel free to ask me in more detail about this! :D

https://crypto.stanford.edu/~dabo/papers/RSA-survey.pdf
https://github.com/RsaCtfTool/RsaCtfTool

Further Resources

Challenges/resources

- https://cryptohack.org
- https://cryptopals.com
- A bunch of picoCTF challenges

- Small point value ones cover some RSA and some ancient crypto
- From there, some symmetric crypto/more complicated public key

crypto/other random cool stuff
- CSE 426 (cryptography class here at UW, fairly theoretical)
- A lot of this content is covered in INFO 310 as well

https://cryptohack.org
https://cryptopals.com

Directions you can go with crypto
- As it relates to security

- Ensure encryption is being used where appropriate and being used
properly

- Theoretical
- Constructing post-quantum cryptosystems
- Constructing robust crypto that has specific properties

- Multiparty computation (stuff that Dr. Benaloh talked about!)
- Practical

- Side channel attacks
- Power analysis
- Timing
- Heat
- Electromagnetic radiation
- ??? (dream it up, someone can probably figure out a way)

Thank you!

