
Intro to Reverse Engineering

Adi

Housekeeping
——

Friday: History of Anonymous Talk presented Krishna

Saturday: GlacierCTF

Next Wednesday: Dead Week Boba

 Batman's Kitchen 2 / 28

What is Reverse Engineering
——

If engineering is turning human ideas into a complete product...

Then reverse engineering is turning that product back into the original ideas

You can reverse engineer anything!

 • Toys
 • Languages
 • EBooks

In cybersecurity/CTF contexts you will be usually reversing applications

 Batman's Kitchen 3 / 28

Why Reverse Engineer?
——

 • It's applicable to many areas of security.
 • You become a better programmer.
 • Everything becomes open-source!

 Batman's Kitchen 4 / 28

Computer Understandable Instructions
——

How does your computer understand what this means?

myStr = "abcde"
for char in myStr:

print(char)

Or this...

String myStr = "abcde";
for (int i = 0; i < myStr.length(); i++) {

System.out.println(myStr.charAt(i));
}

Orrrrr this.

let myStr = String::from("abcde");
for c in myStr.chars() {
 println!("{}", c);
}

 Batman's Kitchen 5 / 28

Computer Understandable Instructions
——

All programming languages are converted to a common
'assembly' language by your compiler

myStr = "abcde"
for char in myStr: .data

print(char) myStr DB 0x61, 0x62, 0x63, 0x64,
0x65, 0x00
.text
MOV RCX, 0x00

String myStr = "abcde"; FOR_LOOP:
for (int i = 0; i < myStr.length(); i++) { CMP RCX, 0x05

System.out.println(myStr.charAt(i)); JGE END
} MOV RAX, 0x01

MOV RDI, 0x01
LEA RSI, [myStr + RCX]
SYSCALL

let myStr = String::from("abcde"); INC RCX
for c in myStr.chars() { JMP FOR_LOOP
 println!("{}", c); END:
}

 Batman's Kitchen 6 / 28

Computer Understandable Instructions
——

This assembly is then directly converted to
and stored as bytes

.data 616263646548C7C1000000004883F9057D1C48C7C0
myStr DB 0x61, 0x62, 0x63, 0x64, 0x65, 0100000048C7C701000000488DB1000000000F0548
0x00 FFC1EBDE
.text
MOV RCX, 0x00
FOR_LOOP:
CMP RCX, 0x05
JGE END
MOV RAX, 0x01
MOV RDI, 0x01
LEA RSI, [myStr + RCX]
SYSCALL
INC RCX
JMP FOR_LOOP
END:

 Batman's Kitchen 7 / 28

A Quick Bit on Bytes
——

Computers do everything in 1s and 0s (bits)

0b0001 = 1, 0b0010 = 2, 0b0100 = 4, 0b1000 = 8, 0b1111 = 15

You can do your typical add and subtract operations on them

0b0001 + 0b1000 = 0b1001 = 9

0b0001 + 0b0101 = 0b0110 = 6

But there are also unique bitwise operations to binary:

Bitwise And: 0b00000101 & 0b00101011 = 0b00000001 = 1

Bitwise Or: 0b00000101 | 0b00101011 = 0b00101111 = 47

Bitwise Xor: 0b00000101 ^ 0b00101011 = 0b00101110 = 46

 Batman's Kitchen 8 / 28

A Quick Bit on Bytes
——

Computers like to deal with data in bundles of 8 bits

0b00000000

These bundles are called bytes

These are displayed as two hexadecimal digits represented by characters 0-9 and A-F.

A-F corresponds to values 10-15

0b00111011 = 0011 1011 = 3 11 = 3 b = 0x3b

0x9f = 9 f = 9 15 = 1001 1111 = 0b10011111

 Batman's Kitchen 9 / 28

Lower Languages
——

Some languages are closer to assembly than others

Python and Java are very abstracted away (High level)

Rust and C are more directly converted (Low level)

It is possible to turn assembly code back into approximate C code!

 Batman's Kitchen 10 / 28

C Crash Course
——

C is very similar to Java, but there are no classes/objects and you have to manage memory yourself

Java C

String myStr = "abcde"; char *myStr = "abcde";
for (int i = 0; i < myStr.length(); i++) { for (int i = 0; i < strlen(myStr); i++) {

System.out.println(myStr.charAt(i)); puts(myStr[i]);
} }

 Batman's Kitchen 11 / 28

C Crash Course
——

C has the a lot of the same data types as Java

int, float, bool, long, char

but they are all just bytes!

Each character is represented by a number 'a' = 0x61

Strings are just an array of characters ended by a zero byte "abcde" = {0x61, 0x62, 0x63, 0x64,
0x65, 0x00}

This means you can do all the same bitwise and arithmetic operations on chars as you could numbers

'a' ^ '8' = 0x61 ^ 0x38 = 0x59 = 'Y'

 Batman's Kitchen 12 / 28

C Crash Course
——

C does have one important type that Java doesn't...

Pointers!

 Batman's Kitchen 13 / 28

C Crash Course
——

Pointers are the address to data in memory

int*, char*, long*

If you think of memory as a mailroom, and data
as mail.

Then pointers are mailbox numbers

 Batman's Kitchen 14 / 28

C Crash Course
——

You get the pointer to a variable with & and modify the variable from a pointer with *

void inc(int n) {
 n += 1;
}

void incp(int* n) {
 *n += 1;
}

int main() {
int n = 1;
printf("n is %d", n); //n is 1
inc(n);
printf("n is %d", n); //n is 1
incp(&n);
printf("n is %d", n); //n is 2
return 0;

}

 Batman's Kitchen 15 / 28

C Crash Course
——

Common C Functions:

puts(const char *str): Print a string as a new line

printf(const char *format, ...): Prints an arbitrary amount of variables as a string on the current
line

fgets(char *str, int size, FILE *stream): Read up to size bytes from file stream, most commonly used
to read user input

strlen(const char *str): Returns the length of a string

strcmp(const char *str1, const char *str2): Compare two strings, and returns 0 if they are equal

strcpy(char *dst, const char *src): Copies a string from src to dst

memcpy(void *dst, const void *src, int size): Copies size bytes from src to dst, regardless of type

 Batman's Kitchen 16 / 28

Reverse Engineering Tools
——

There are tools called decompilers that can do this process for you

IDA Pro: Industry one created by Hex-Rays

Ghidra: Open source one created by the NSA

Binary Ninja: Modern one created by Vector35

All of these are free or have free versions

Binary Ninja has a free web browser version that we will use

https://cloud.binary.ninja/

 Batman's Kitchen 17 / 28

Challenges
——

https://binary.ninja/

Download the challenges in the discord

it won't hack your computer i pinky promise ;)

 Batman's Kitchen 18 / 28

Decompilers are great, but...
——

Decompilers are a great tool to speed up understanding a program, but they aren't perfect

 • It's a lossy conversion inheriently
 • They don't work as well on programs made in different languages
 • Sometimes it's just plain wrong

It's still important to be able to read and understand assembly.

 Batman's Kitchen 19 / 28

Assembly Anatomy
——

There are multiple types of assembly instruction sets

x86-64 (We will be focusing on AArch64 MIPS64
this one)

myStr: .byte 0x61, 0x62, myStr: .byte 0x61, 0x62,
myStr DB 0x61, 0x62, 0x63, 0x63, 0x64, 0x65 0x63, 0x64, 0x65
0x64, 0x65 MOV X0, 0x00 li $t0, 0x00
MOV RCX, 0x00 FOR_LOOP: li $t1, 0x05
FOR_LOOP: CMP X0, 0x05 FOR_LOOP:
CMP RCX, 0x05 BGE END beq $t0, $t1, END
JGE END MOV X8, 0x40 la $a0, myStr
MOV RAX, 0x01 MOV X1, 0x01 add $a0, $a0, $t0
MOV RDI, 0x01 MOV X3, 0x01 lb $a0, 0($a0)
LEA RSI, [myStr + RCX] ADR X2, myStr li $v0, 0x0b
SYSCALL ADD X2, X2, X0 syscall
INC RCX SVC 0x00 add $t0, $t0, 0x01
JMP FOR_LOOP ADD X0, X0, 0x01 j FOR_LOOP
END: B FOR_LOOP END:

END:

 Batman's Kitchen 20 / 28

Assembly Anatomy
——

Assembly instructions are made up of two parts,

Opcode: The type of instruction that it's executing

Operands: Arguments for those instructions, these can be either literal, address, or register

<OPCODE> <OPERANDS>

 Batman's Kitchen 21 / 28

Assembly Anatomy
——

Registers: Think of these as short term global variables that are very fast for your computer to
access

General Purpose:

RAX, RBX, RCX, RDX, RDI, RSI, R8-15

Special:

RSP (Stack Pointer), RBP (Base Pointer), RIP (Instruction Pointer)

You cannot create more registers as these are physical things on your CPU

 Batman's Kitchen 22 / 28

Common Assembly Instructions
——

Moving:

MOV <dst>, <src>: Copies the value from src to dst

LEA <dst>, <exp>: Load evalutated value from exp to dst

 Batman's Kitchen 23 / 28

Common Assembly Instructions
——

Arithemetic:

ADD <dst>, <src>: Adds src and dst, and saves it in dst

SUB <dst>, <src>: Subtracts src from dst, and saves it in dst

MUL <dst>, <src>: Multiplies src and dst, and saves it in dst

AND <dst>, <src>: Does bitwise and on src and dst, and saves it in dst

OR <dst>, <src>: Does bitwise or on src and dst, and saves it in dst

XOR <dst>, <src>: Does bitwise xor on src and dst, and saves it in dst

INC <dst>: Increments value in dst by 1

DEC <dst>: Decrements value in dst by 1

 Batman's Kitchen 24 / 28

Common Assembly Instructions
——

Control Flow:

CMP <arg1>, <arg2>: Compares two values that will affect a jump instruction

JE <lab>: Jumps to label if arg1 == arg2, (Also called JZ)

JNE <lab>: Jumps to label if arg1 != arg2, (Also called JNZ)

JL <lab>: Jumps to label if arg1 < arg2

JG <lab>: Jumps to label if arg1 > arg2

JLE <lab>: Jumps to label if arg1 <= arg2

JGE <lab>: Jumps to label if arg1 >= arg2

Labels are just a named area in your assembly

 Batman's Kitchen 25 / 28

Challenge 2-1
——

What value is in RAX at the end of this program?

.data
myBytes DB 0x01, 0x02, 0x03, 0x04
.text
MOV RAX, 0x0d
MOV RBX, 0x10
SUB RBX, RAX
MOV RCX, 0x02
MUL RBX, [myBytes + RCX]
ADD RAX, RBX

 Batman's Kitchen 26 / 28

Challenge 2-2
——

What value is in RAX at the end of this program?

.data
myBytes DB 0x01, 0x02, 0x03, 0x04
.text
MOV RAX, 0x00
MOV RCX, 0x00
LABEL_1:
CMP RCX, 0x04
JGE LABEL_2
MOV RBX, [myBytes + RCX]
ADD RAX, RBX
INC RCX
JMP LABEL_1
LABEL_2:
ADD RAX, RCX

 Batman's Kitchen 27 / 28

Reversing Methodology
——

What we have been doing with Binary Ninja is static analysis.

Gaining information by looking at the program's code without running it

There is also dynamic analysis, where you get info by running the program (usually with a debugger)

Static is great for understanding finding what can happen and how

Dynamic is great for understanding finding what will happen and why

Alternate between static and dynamic anaylsis if possible

 Batman's Kitchen 28 / 28

