Intro to Reverse Engineering

Adi

Friday: History of Anonymous Talk presented Krishna
Saturday: GlacierCTF

Next Wednesday: Dead Week Boba

If engineering is turning human ideas into a complete product...
Then reverse engineering is turning that product back into the original ideas

You can reverse engineer anything!

e Toys
e Languages
e EBooks

In cybersecurity/CTF contexts you will be usually reversing applications

e It's applicable to many areas of security.
¢ You become a better programmer.
e Everything becomes open-source!

How does your computer understand what this means?

myStr = "abcde"
for char in myStr:
print(char)

Or this...

String myStr = "abcde";

for (int i = 0; i < myStr.length(); i++) {
System.out.println(myStr.charAt(i));

}

Orrrrr this.

let myStr = String::from("abcde");

for ¢ in myStr.chars() {
println!("{}", c);

}

All programming languages are converted to a common
'assembly' language by your compiler

myStr = "abcde"

for char in myStr: .data
print(char) myStr DB 0x61, 0x62, 0x63, 0x64,
0x65, 0x00
.text
MOV RCX, 0x00
String myStr = "abcde"; FOR LOOP:
for (int i = 0; 1 < myStr.length(); i++) { CMP RCX, 0x05
System.out.println(myStr.charAt(i)); JGE END
} MOV RAX, 0x01

MOV RDI, 0x01
LEA RSI, [myStr + RCX]

SYSCALL
let myStr = String::from("abcde"); INC RCX
for ¢ in myStr.chars() { JMP FOR_LOOP
printin!("{}", c); END:

}

This assembly is then directly converted to
and stored as bytes

.data 616263646548C7C1000000004883F9057D1C48C7C0O
myStr DB 0x61, 0x62, 0x63, 0x64, 0x65, 0100000048C7C701000000488DB100OOOOOOOFO548
0x00 FFC1EBDE

.text

MOV RCX, 0Ox00

FOR_LOOP:

CMP RCX, 0x05

JGE END

MOV RAX, 0x01

MOV RDI, 0Ox01

LEA RSI, [myStr + RCX]

SYSCALL

INC RCX

JMP FOR LOOP

END:

Computers do everything in 1ls and 0s (bits)
0b00O1 = 1, 0b0O16 = 2, 0bO1OO = 4, Ob1EOO = 8, 0b11ll = 15

You can do your typical add and subtract operations on them

0b0001 + 0b1OOO = Ob10O1 = 9

0b0001 + 0b0101 = O0bO110 = 6

But there are also unique bitwise operations to binary:
Bitwise And: 0b00000101 & 0b00101011 = 0b6OEOOOOL = 1
Bitwise Or: 0b00000101 | 0b00101011 = 6b0O101111 = 47

Bitwise Xor: 0b00000101 ~ 0b00101011 = 0b00101110 = 46

Computers like to deal with data in bundles of 8 bits

0b00000000

These bundles are called bytes

These are displayed as two hexadecimal digits represented by characters 0-9 and A-F.

A-F corresponds to values 10-15

0b00111011 = 0011 1011 = 3 11 = 3 b = 0x3b

0x9f =9 f =9 15 = 1001 1111 = 0b16011111

Some languages are closer to assembly than others
Python and Java are very abstracted away (High level)
Rust and C are more directly converted (Low level)

It is possible to turn assembly code back into approximate C code!

C is very similar to Java, but there are no classes/objects and you have to manage memory yourself

BEVE] C
String myStr = "abcde"; char *myStr = "abcde";
for (int 1 = 0; i < myStr.length(); i++) { for (int 1 = 0; i < strlen(myStr); i++) {
System.out.println(myStr.charAt(i)); puts(myStr[i]);

}

C has the a lot of the same data types as Java

int, float, bool, long, char

but they are all just bytes!
Each character is represented by a number 'a' = 0x61

Strings are just an array of characters ended by a zero byte "abcde" = {0x61, 0x62, 0x63, 0x64,
0x65, 0x00}

This means you can do all the same bitwise and arithmetic operations on chars as you could numbers

‘a' ~ '8' = Ox61 ~ Ox38 = 0x59 = 'Y'

C does have one important type that Java doesn't...

Pointers!

Pointers are the address to data in memory
int*, char*, long*

If you think of memory as a mailroom, and data
as mail.

Then pointers are mailbox numbers

You get the pointer to a variable with & and modify the variable from a pointer with *

void inc(int n) {
n+=1;
}

void incp(int* n) {
*n += 1;
}

int main() {

int n = 1;

printf("n is %d", n); //n is 1
inc(n);

printf("n is %d", n); //n is 1
incp(&n);

printf("n is %d", n); //n is 2
return 0;

Common C Functions:
puts(const char *str): Print a string as a new line

printf(const char *format, ...): Prints an arbitrary amount of variables as a string on the current
line

fgets(char *str, int size, FILE *stream): Read up to size bytes from file stream, most commonly used
to read user input

strlen(const char *str): Returns the length of a string
strcmp(const char *strl, const char *str2): Compare two strings, and returns 0@ if they are equal
strcpy(char *dst, const char *src): Copies a string from src to dst

memcpy (void *dst, const void *src, int size): Copies size bytes from src to dst, regardless of type

There are tools called decompilers that can do this process for you
IDA Pro: Industry one created by Hex-Rays

Ghidra: Open source one created by the NSA

Binary Ninja: Modern one created by Vector35

All of these are free or have free versions

Binary Ninja has a free web browser version that we will use

https://cloud.binary.ninja/

https://binary.ninja/
Download the challenges in the discord

it won't hack your computer i pinky promise ;)

Decompilers are a great tool to speed up understanding a program, but they aren't perfect
e It's a lossy conversion inheriently
¢ They don't work as well on programs made in different languages
e Sometimes it's just plain wrong

It's still important to be able to read and understand assembly.

There are multiple types of assembly instruction sets

x86-64 (We will be focusing on
this one)

myStr DB 0x61, 0x62, 0x63,
0x64, 0x65

MOV RCX, 0x00

FOR LOOP:

CMP RCX, 0x05

JGE END

MOV RAX, 0x01

MOV RDI, 0x01

LEA RSI, [myStr + RCX]
SYSCALL

INC RCX

JMP FOR _LOOP

END:

myStr:

AArch64

0x63, 0x64, 0x65

MOV

FOR

CMP
BGE
MOV
MOV
MOV
ADR
ADD
SVC
ADD

X0, 0x00
LOOP:

X0, 0x05
END

X8, 0x40
X1, 6x01
X3, 0x01
X2, myStr
X2, X2, X0
0x00

X0, X0, 0x01

B FOR LOOP

END:

.byte 0x61, 0x62,

MIPS64

myStr: .byte 0x61, 0x62,
0x63, 0x64, 0x65
1i $t0, 0x00

1i $tl, Ox05

FOR LOOP:

beq $t0, $tl, END
la $a0, myStr

add $a0, $a0, $tO
b $a0, 0($a0)

1i $vO, Ox0b
syscall

add $t0, $t0, 0x01
j FOR _LOOP

END:

Assembly instructions are made up of two parts,
Opcode: The type of instruction that it's executing

Operands: Arguments for those instructions, these can be either literal, address, or register

<OPCODE> <OPERANDS>

Registers: Think of these as short term global variables that are very fast for your computer to
access

General Purpose:

RAX, RBX, RCX, RDX, RDI, RSI, R8-15

Special:

RSP (Stack Pointer), RBP (Base Pointer), RIP (Instruction Pointer)

_
_

2 bym 1 byvs- 8bytes 4 nvm by(s- 1 hv(e

&

"

EEIIIIIEIZEEEZ

)
al
o

il

o 5
z|5
2|
FIE]
-
s
-
H

You cannot create more registers as these are physical things on your CPU

Moving:
MOV <dst>, <src>: Copies the value from src to dst

LEA <dst>, <exp>: Load evalutated value from exp to dst

Arithemetic:

ADD <dst>, <src>:
SUB <dst>, <src>:
MUL <dst>, <src>:

AND <dst>, <src>:

Adds src and dst, and saves it in dst
Subtracts src from dst, and saves it in dst
Multiplies src and dst, and saves it in dst

Does bitwise and on src and dst, and saves it in dst

OR <dst>, <src>: Does bitwise or on src and dst, and saves it in dst

XOR <dst>, <src>:

Does bitwise xor on src and dst, and saves it in dst

INC <dst>: Increments value in dst by 1

DEC <dst>: Decrements value in dst by 1

Control Flow:

CMP <argl>, <arg2>: Compares two values that will affect a jump instruction
JE <lab>: Jumps to label if argl == arg2, (Also called JZ)

JNE <lab>: Jumps to label if argl != arg2, (Also called JNZ)

JL <lab>: Jumps to label if argl < arg2

JG <lab>: Jumps to label if argl > arg2

JLE <lab>: Jumps to label if argl <= arg2

JGE <lab>: Jumps to label if argl >= arg2

Labels are just a named area in your assembly

What value is in RAX at the end of this program?

.data

myBytes DB 0x01, 0x02, 0x03, 0x04
.text

MOV RAX, 0x0d

MOV RBX, 0x10

SUB RBX, RAX

MOV RCX, 0x02

MUL RBX, [myBytes + RCX]

ADD RAX, RBX

What value is in RAX at the end of this program?

.data

myBytes DB 0x01, 0x02, 0x03, 0x04
.text

MOV RAX, 0x00

MOV RCX, 0x00

LABEL 1:

CMP RCX, 0x04

JGE LABEL 2

MOV RBX, [myBytes + RCX]
ADD RAX, RBX

INC RCX

JMP LABEL 1

LABEL 2:

ADD RAX, RCX

What we have been doing with Binary Ninja is static analysis.

Gaining information by looking at the program's code without running it

There is also dynamic analysis, where you get info by running the program (usually with a debugger)
Static is great for understanding finding what can happen and how

Dynamic is great for understanding finding what will happen and why

Alternate between static and dynamic anaylsis if possible

